Prepatration of 26, 28-dimethoxycalix[4]arene (1a)

Calix[4]arene (0.425 g, 1.0 mmol) and K₂CO₃ (0.1512 g, 1.09 mmol) was suspended in CH₃CN (10 mL) and the mixture was stirred at room temperature for 1 h. Iodomethane (0.1313 g, 2.20 mmol) was then added and the mixture was heated at reflux overnight. The mixture cooled to room temperature. The reaction was filtered to take K₂CO₃ off and then the filtrate was concentrated by rotary evaporator. The residue was dissolved in dichloromethane and washed with 3 M HCl 3 times. The organic layer was dried over anhydrous NaSO₄. The volumn of the solvent was reduced by using a rotary evaporator. Upon adding CH₃OH, a white solid of compound **1a** precipitated (0.397 g, 87.77% yield).

Characterization data for 1a

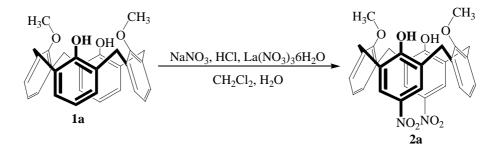
¹H-NMR spectrum (200 MHz, CDCl₃): δ (in ppm)

 δ 7.72 (s, 2H, O*H*), 7.09-6.63 (m, 12H, Ar*H*), 4.33 and 3.42 (d, J = 13.2 Hz, 8H, ArC H_2 Ar), 3.97 (s, 6H, OC H_3).

Preparation of 26,28-dimethylethylestercalix[4] arene (1b)

Calix[4]arene (1.0 g, 2.36 mmol) and K_2CO_3 (2.50 g, 23.6 mmol) was suspended in CH₃CN (15 mL) and the mixture was stirred at room temperature for 1 h. Bromoethyl acetate (0.87 g, 5.20 mmol) was then added and the mixture was heated at reflux for 4 h. The mixture was cooled to room temperature. The reaction was filtered to take K_2CO_3 off

and then the filtrate was concentrated by rotary evaporator. The residue was dissolved in dichloromethane and washed with saturated NH₄Cl 3 times. The organic layer was dried over anhydrous NaSO₄. The volumn of the solvent was reduced by using a rotary evaporator. Upon adding CH₃OH, a white solid of **1b** was obtained in 0.801g, 57%.


Characterization data for 1b

¹H-NMR spectrum (200 MHz, CDCl₃): δ (in ppm)

 δ 7.57 (s, 2H, O*H*), 7.04 (d, J = 7.47 Hz, 4H, m-ArHOR), 6.89 (d, J = 7.41 Hz, 4H, m-ArHOH), 6.76-6.60 (m, 4H, p-ArHOR and p-ArHOH), 4.71 (s, 4H, ArOCH2-), 4.46 and 3.38 (dd, J = 13.3, ArCH2Ar), 4.37-4.27 (q, J = 7.23 Hz, -OCH2CH3), 1.34 (t, J = 6.53 Hz, 6H, -OCH2CH3)

melting point: 180 °C

Preparation of 5,7-dinitro-26,28-dimethoxycalix[4]arene (2a)

To a solution (CH2Cl2, 494 mL) of 26,28-dimethoxycalix[4]arene (**1a**) (10 g, 22.1 mmol) was added NaNO₃ (5.64 g; 66.3 mmol) and a catalytic amount of La(NO₃) $_3$.6H₂O in a mixture of H₂O (304 mL) and concentrated HCl (55 mL). The mixture was stirred overnight at room temperature. The colour of the mixture turned to yellow. The aqueous layers were then separated and extracted with CH₂Cl₂ (250x2). The organic layer was combined and washed with saturated aqueous NH₄Cl (250x2) and dried over anhydrous Na₂SO₄. The solvent was removed by a rotary evaporator and the product was crytallized by adding hexane to give a white solid (8.51 g, 71% yield). mp > 320 $^{\circ}$ C decomposed.

Characterization data for 2a

¹H-NMR spectrum (200 MHz, CDCl₃): δ (in ppm)

 δ 8.93(s, 2H, -O*H*), 8.04 (s, 4H, *H*Ar-NO₂), 6.94 (d, 4H, *m*-*H*Ar-OCH₃, J = 7.2 Hz), 6.85-6.77 (t, 2H, p-*H*Ar-OCH₃, J = 7.4), 4.28 and 3.52 (dd, 8H, *H*AB system, J = 13.3 Hz), 4.02 (s, 6H, -OC*H*₃).

Preparation of 5,7-dinitro-26,28-dimethylethylestercalix[4]arene (2b)

To a solution (CH₂Cl₂, 140 mL) of 26,28-dimethylethylestercalix[4]arene (**1b**) (3.15 g, 5.26 mmol) was added NaNO₃ (2.70 g, 31.74 mmol) and a catalytic amount of La (NO₃)₃.6H₂O in a mixture of H₂O (88 mL) and concentrated HCl (14.3 mL). The mixture was stirred overnight at room temperature and then worked up in a similar fashion as **2a** to give a yellow solid **2b** (3.17 g, 88% yield).

Characterization data for 2b

¹H-NMR spectrum (200 MHz, CDCl₃): δ (in ppm)

 δ 8.90 (s, 2H, -O*H*), 8.01 (s, 4H, *O*-Ar*H*-NO₂), 6.91 (d, J = 8.34 Hz, m-Ar*H*-OH), 6.84 (t, J = 6.44 Hz, 2H, p-Ar*H*-OR), 4.67 (s, 4H, OC*H*₂CO), 4.45, and 3.49 (dd, J = 13.32 Hz, 8H, AB system), 4.35 (q, J = 7.14 Hz, 4H, OC*H*₂CH₃), 1.39 (t, J = 8.7 Hz, 6H, -CH₂CH₃)

Melting point: 250 °C

Preparation of 5,7-dinitro-25,26,27,28-tetramethoxycalix[4]arene (3a)

$$\begin{array}{c} \text{H}_{3}\text{C} \\ \text{OH}_{OH} \\ \text{O} \\ \text{OH}_{OH} \\ \text{OO}_{2}\text{NO}_{2} \\ \\ \textbf{2a} \\ \end{array} \qquad \begin{array}{c} \text{H}_{3}\text{CH}_{3}\text{C} \\ \text{CH}_{3}\text{CH}_{3} \\ \text{CH}_{3}\text{CH}_{3} \\ \text{OO}_{0} \\ \text$$

A solution (DMF, 10 mL) of 5,7-dinitro-26,28-dimethoxycalix[4]arene (2a) (0.2713 g, 0.5 mmol) and K₂CO₃ (0.695 g, 5 mmol) was stirred at room temperature for 1 h. CH₃I (0.50 mL, 8.00 mmol) was then added and the mixture was heated at 60 °C for 7 days. After the mixture was cooled to room temperature, the solvent was removed under reduced pressure. The residue was dissolved in CH₂Cl₂ (30 mL) and washed with water and brine (2x30) and then dried over anhydrous Na₂SO₄. The solvent was removed by using a rotary evaporator. Upon addition of CH₃OH, a white solid 3a precipitated (71% yield).

Characterization data for 3a

¹H-NMR spectrum (200 MHz, CDCl₃): δ (in ppm)

 δ 8.19-6.43 (m, 10H, Ar*H*), 4.37, 4.05, 3.28 and 3.17 (d, each J=13.3 Hz, 8H, ArC H_2 Ar), 3.85-3.72 (m, 12H, -OC H_3).

ESI-TOF mass spectrum: $C_{32}H_{30}N_2O_8 = 571.30 ([M+H^+]) \text{ m/z}.$

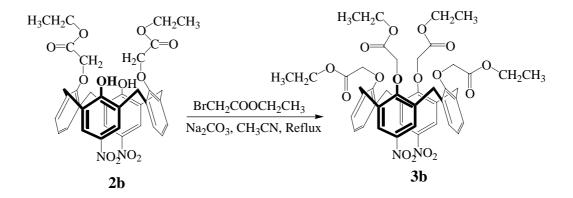
Melting point: 260 °C

$\begin{array}{lll} \textbf{Preparation} & \textbf{of} & \textbf{5,7-dinitro-25,26,27,28-dimethoxydimethylethylestercalix[4] arene} \\ \textbf{(3b)} & \end{array}$

A solution (DMF, 20 mL) of 5,7-dinitro-26,28-dimethoxy dimethylethyl ester calix[4]arene (**2a**) (0.543 g, 1.0 mmol) and NaH (0.12 g, 5.0 mmol was stirred at room temperature for 1 h. Bromoethyl acetate (0.40 mL, 3.0 mmol) was then added and the mixture was heated at 60 °C overnight. The reaction was worked up corresponding to the procedure of **3a** to provide the pale yellow solid of **3b** in ---g., (61%).

Characterization data for 3b

¹H-NMR spectrum (200 MHz, CDCl₃): δ (in ppm)


δ 7.83-7.08 (m, 10H, *H*-Aromatic), 4.45 (s, 4H, -OC H_2 CO-), 4.32-4.21 (q, 4H, -OC H_2 CH₃, J = 7.2 Hz), 3.96-2.99 (m, 14H, -OC H_3 and *H*AB system), 1.34-1.27 (td, 6H, -CH₂C H_3 , J = 7.1 and 1.5 Hz).

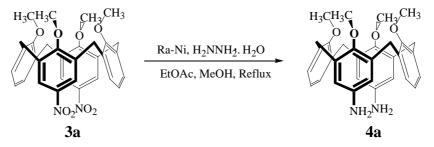
Elemental Analysis:

Anal. Calcd for C₃₈H₃₈O₁₂N₂: C, 63.86; H, 5.36; N, 3.92

Found: C, 63.85; H, 5.29; N, 3.88

Preparation of 5,7-dinitro-25,26,27,28-dimethylethylestercalix[4]arene (3c)

A solution (CH₃CN, 30 mL) of 5,7-dinitro-26,28-dimethylethylestercalix[4]arene (**2b**) (0.60 g, 1.0 mmol) and Na₂CO₃ (1.14 g, 10.4 mmol) was stirred at room temperature for 1 h. Bromoethyl acetate (1.20 mL, 1.67 mmol) was then added and the mixture was refluxed overnight. The mixture was allowed to cool to room temperature and Na₂CO₃ was removed by filtration. The mixture was evaporated using a rotary evaporator. The residue was dissolved in CH₂Cl₂ (20 mL). The organic phase was then washed with saturated NH₄Cl 3 times. The organic layer was dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure. Finally, compound **3c** precipitated as a yelloe solid upon addition of CH₃OH (0.524 g, 61%).


Characterization data for 3c

¹H-NMR spectrum (200 MHz, CDCl₃): δ (in ppm)

δ 8.90 (s, 2H, O*H*), 8.01 (s, 4H, *m*-Ar*H*OH), 6.99 (d, J = 6.97 Hz, *m*-Ar*H*OR), 6.89-6.80 (m, 2H, *p*-Ar*H*OR), 4.71 (s, 4H, -OC*H*₂CO-), 4.45 and 3.49 (dd, J = 13.3 Hz, 8H, ArC*H*₂Ar), 4.40-4.29 (q, J = 7.17 Hz, -OC*H*₂CH₃), 1.35 (t, J = 7.13 Hz, 6H, OCH₂CH₃)

Melting point: 190 °C

Preparation of 5,7-diamino-25,26,27,28-tetramethoxycalix[4]arene (4a)

5,7-Dinitro-25,26,27,28-tetramethoxycalix[4]arene (1.3928 g, 1.95 mmol) and Raney Ni (2.0951 g) in the mixture of ethylacetate (80 mL) and CH₃OH (40 mL). Hydrazine (4 mL) was then added into the mixture. The mixture was refluxed for 2 h. and allowed to cool to room temperature. The solvent was subsequently removed under reduced pressure. The residue was dissolved in CH₂Cl₂ and extracted and washed with several portions of H₂O. The organic layer was separated, combinded and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure to give a pale-white solid 4a (0.976 g, 98% yield).

Characterization data for 4a

 OCH_3 and AB system).

¹H-NMR spectrum (200 MHz, CDCl₃): δ (in ppm) δ 7.04-6.43 (m-br, 6H, Ar*H*), 6.09 (s,br, 4H, *o*-Ar*H*-NH₂), 4.26-2.91 (m, br, 20H,

ES-TOF mass spectrum: $C_{32}H_{34}N_2O_4 = 511.30 ([M+H^+]) \text{ m/z}.$

Preparation of 5,7-diamino-25,26,27,28-dimethoxy dimethylethylester calix[4]arene (4b)

5,7-Dinitro-25,26,27,28-dimethoxydimethylethylestercalix[4]arene (**3b**) (0.714 g, 1.0 mmol) and Raney Ni (1.0 g) were dissolved in the mixture of ethylacetate (38 mL) and CH₃OH (28 mL). Hydrazine (4 mL) was subsequently added. The mixture was refluxed for 2 h. and allowed to cool to room temperature. The reaction was worked up as described previously (**4a**). Compound **4b** was obtained as a white solid (0.628 g, 96%).

Characterization data for 4b

¹H-NMR spectrum (200 MHz, CDCl₃): δ (in ppm)

δ 7.22 (d, 4H, m-HAr-OCH₃, J = 6.9 Hz), 6.93-6.86 (t, 2H, p-HAr-OCH₃, J = 7.2 Hz), 5.69 (s, 4H, o-HAr-NH₂), 4.40 (d, 4H, AB system, J = 13.1 Hz and s, 4H, o-CH₂CO-), 4.30-4.20 (q, 4H, -OCH₂CH₃, J = 7.1 Hz), 3.96 and 3.46 (s, 6H, -OCH₃), 3.10 (d, 4H, AB system, J = 12.8 Hz), 1.33-1.26 (t, 6H,-OCH₂CH₃, J = 7.1 Hz).

ESI-TOF mass spectrum: $C_{38}H_{42}N_2O_8 = 655.70 ([M+H^+]) \text{ m/z}.$

Elemental Analysis:

Anal. Calcd.for C₃₈H₄₂N₂O₈: C, 69.71; H, 6.47; N, 4.28

Found: C, 69.71; H, 6.25; N, 4.26.

Preparation of 5,7-diamino-25,26,27,28-tetramethylethylestercalix[4]arene (4c)

5,7-Dinitro-25,26,27,28-tetramethylethylestercalix[4]arene (1.47 g, 1.52 mmol) (**3c**) and Raney Ni (1.52 g) were dissolved in the mixture of ethylacetate (58 mL) and CH₃OH (42 mL). Hydrazine (6 mL) was subsequently added. The mixture was refluxed for 2 h. and allowed to cool to room temperature. The reaction was worked up as described previously (**4a**). Compound **4c** was obtained as a white solid (1.15g, 95%).

Characterization data for 4c

¹H-NMR spectrum (200 MHz, CDCl₃): δ (in ppm)

 δ 6.69-6.59 (m, 6H, m-Ar*H*-OR), 6.01 (s, 4H, *o*-Ar*H*-NH₂), 4.78 and 3.10 (d, J = 13.1 Hz, 8H, AB system), 4.70 (s, 4H, ArOCH₂-), 4.61 (s, 4H, NH₂-Ar-OCH₂-), 4.18 (q, J = 7.1 Hz, 8H, o-CH₂CH₃), 1.26 (t, J = 7.2 Hz, 12 H, -CH₃)

ESI-TOF mass spectrum: $C_{44}H_{50}N_2O_{12} = 799.13 ([M+H^+]) \text{ m/z}.$

Preparation of 5,7-diamideferrocenyl-25,26,27,28-tetramethoxycalix[4]arene (L1)

$$\begin{array}{c} H_3CH_3C \\ CH_3CH_3 \\ CI \\ Fe \\ CI \\ Et_3N, CH_2Cl_2, RT \\ \end{array}$$

Into a two-necked round-bottomed flask, the mixture of tetramethoxy-diaminocalix[4]arene(4a) (0.786 g, 1.54 mmol) and triethylamine (0.5 mL) in

dichloromethane (30 mL) was stirred at room temperature under N₂. 1,1-Bis (chlorocabonyl)ferrocene (0.6201g, 2.0 mmol) in dichloromethane (30 mL) was

transferred into the mixture via cannula. The mixture was stirred at room temperature

under N₂ for 4 h. It was then washed with several portion of H₂O. The organic layer was

dried with anhydrous NaSO₄. The solvent was removed under reduced pressure to afford

a dark red residue which was then placed on a silica gel chromotography column.

Compound L1 was eluted from the column using 10% EtOAc in CH₂Cl₂ as eluant. The

yield of compound L1 is an orange solid (0.576 g., 50%). An orange crystal L1 was

obtained by slow diffusion of hexane into CH₂Cl₂ and CH₃OH solution of compound L1.

Characterization data for L1

¹H-NMR spectrum (500 MHz, d⁶-Acetone): δ (in ppm)

 δ 8.09 (s, 2H, -NH-(pc)), 7.86 (s, 2H,-NH-(c)), 7.59 and 6.46 (d, J = 3 Hz, 4H, -ArH-NH-

(pc)), 7.22 (d, J = 8 Hz, 4H, m-ArH (c)) 7.18 and 7.10 (d, J = 7.5 Hz, 4H, m-ArH, (pc)),

7.01 (t, J = 7.5 Hz, 2H, p-ArH (c)), 6.93 and 6.81 (t, J = 7.5 Hz, 2H, p-ArH (pc)), 6.47 (s,

4H, -NH-ArH- (c)) 5.00 and 4.83 (m, 4H, o-CpH (pc)), 4.75 (t, J = 2.5 Hz, 4H, o-CpH

(c)), 4.41 and 4.36 (m, 4H, m-CpH (pc)), 4.36 and 3.14 (d, J = 13.5, 8H, AB system(c)),

4.313 (t, J = 2 Hz, 4H-CpH (c)), 4.04 and 3.06 (d, J = 14 Hz, 8H, AB system), 3.92-3.65

 $(m, 21H, -OCH_3 (pc and c)), 2.86 (s, 3H, -OCH_3 (pc)).$

ESI-TOF mass spectrum: $C_{44}H_{40}N_2O_6Fe = 749.50 ([M+H^+]) m/z$.

Elemental Analysis:

Anal. Calcd. for C₄₄H₄₀N₂O₆Fe[•]0.5 CH₂Cl₂: C, 67.56; H, 5.22; N, 3.45.

Found: C, 67.72; H, 5.24; N, 3.55.

Melting point: 200 °C decomposed

Preparation of 5,7-diamideferrocenyl-25,26,27,28-dimethoxy dimethylethylestercalix [4] arene (L2)

Into a two-necked round-bottomed flask, the mixture of dimethoxy dimethyl ethylester-diaminocalix[4]arene(4b) (1.31 g, 2.0 mmol) and triethylamine (mL) in dichloromethane (40 mL) was stirred at room temperature under N₂. 1,1-Bis (chlorocabonyl)ferrocene (0.620g, 2.1 mmol) in dichloromethane (20 mL) was transferred into the mixture via cannula. The mixture was stirred at room temperature under N₂ for 4 h. It was then washed with several portion of H₂O. The organic layer was dried with anhydrous NaSO₄. The solvent was removed under reduced pressure to afford a dark red residue which was then placed on a silica gel chromotography column. Compound L2 was eluted from the column using 10% EtOAc in CH₂Cl₂ as eluant. The yield of compound L2 is an orange solid (0.576 g., 50%). An orange crystal L2 was obtained by slow diffusion of hexane into CH₂Cl₂ and CH₃OH solution of compound L2.

Characterization data for L2

 $^{1}\text{H-NMR}$ spectrum (500 MHz, $d^{6}\text{-Acetane}$): δ (in ppm)

δ 8.10 (s, 2H, -N*H*-(pc)) and 7.88 (s, 2H, -N*H*-(c)), 7.58 and 6.45 (d, J = 2.5 Hz, 4H, -Ar*H*-NH-(pc)), 7.43 and 7.04 (d, J = 7.5 Hz, 4H, m-ArH, (pc)), 7.12 (d, J = 7.5 Hz, 4H, m-ArH (c)), 6.95 (t, J = 7.5 Hz, 2H, p-ArH (c)), 6.89 and 6.82 (t, J = 7.5 Hz, 2H, p-ArH (pc)), 6.46 (s, 4H, -NH-ArH- (c)) 5.03 and 4.86 (m, 4H, o-CpH (pc)), 4.78 (t, J = 2 Hz, 4H, o-CpH (c)), 4.39-4.37 (m, 4H (m-CpH (pc)), 4H (m-CpH (c)), 8H (-OCH₂-CO-(c and pc)), 4H (AB system(c))), 4.26-4.21 (m, 4H, -OCH₂CH₃). 4.07 and 3.05 (d, J = 14 Hz, 4H, AB system (pc)), 3.83 and 3.59 (d, J = 12.5 Hz, 4H, AB system (pc)), 2.97 (s, 3H, -OCH₃), 1.28 (m, 6H, -CH₃).

ESI-TOF mass spectrum: $C_{50}H_{48}N_2O_{10}Fe = 893.51 ([M+H^+]) \text{ m/z}.$

Elemental Analysis:

Anal. Calcd. for C₅₀H₄₈N₂O₁₀Fe·0.5 CH₂Cl₂: C, 64.85; H, 5.28; N, 3.00.

Found: C, 65.28; H, 5.51; N, 3.19.

Melting point: 150 °C

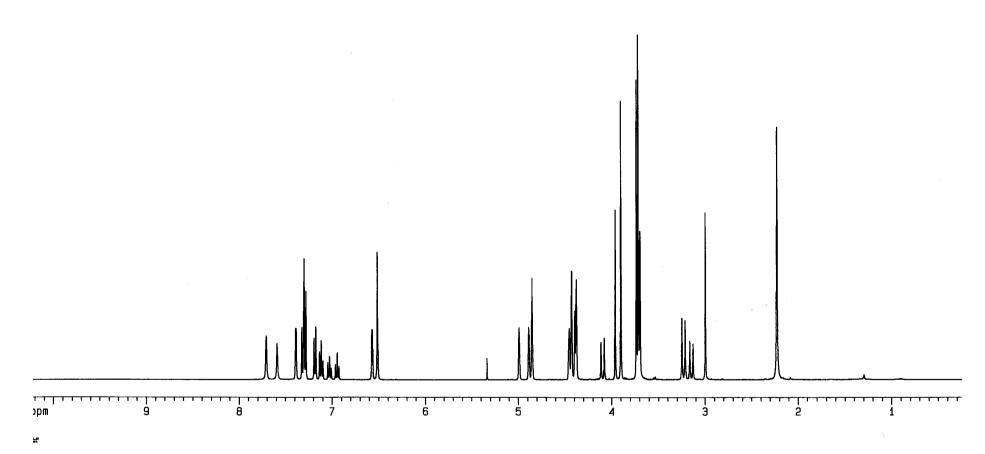
Preparation of 5,7-diamideferrocenyl-25,26,27,28-tetramethyl ethylestercalix[4] arene (L3)

Into a two-necked round-bottomed flask, the mixture of tetramethylethylester-diaminocalix[4]arene(4c) (1.13 g, 1.53 mmol) and triethylamine () in dichloromethane (40 mL) were stirred at room temperature under N_2 . 1,1-Bis(chlorocabonyl)ferrocene (0.481 g, 1.55 mmol) in dichloromethane (20 mL) was transferred into the mixture via cannula. The mixture was stirred at room temperature under N_2 for 4 h. The work-up procedure is similar to the procedure as described previously. Crude product was purified on a silica gel column using 10% EtOAc in CH_2Cl_2 as eluant to afford an orange solid L3 (0.666 g, 42%).

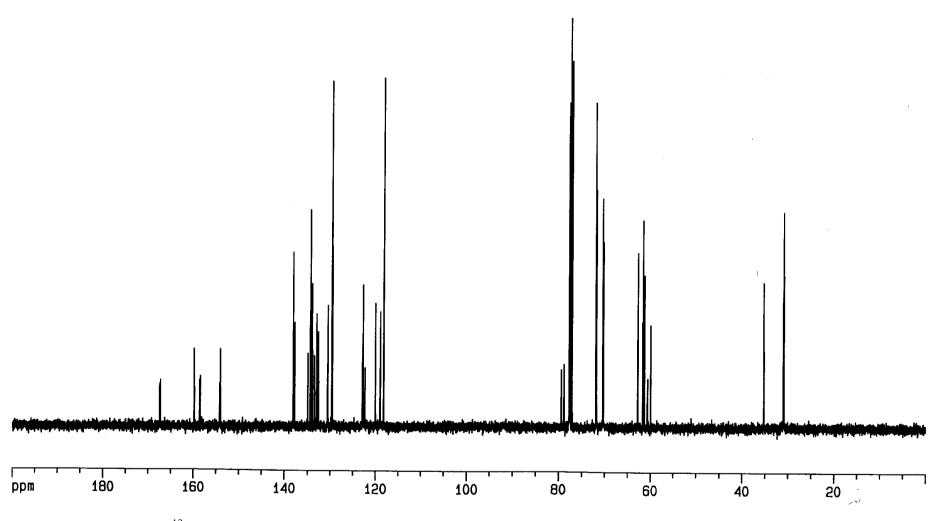
Characterization data for L3

¹H-NMR spectrum (200 MHz, CDCl₃): δ (in ppm)

δ 7.25 (s, 2H, -NH-), 7.20 (d, J = 6.7 Hz, 4H, m-ArH-OR), 7.09 (t, J = 6.4 Hz, 2H, p-ArHOR), 6.43 (s, 4H, o-ArH-NH-), 4.87 and 3.22 (d, J = 13.0, 8H, AB system), 4.90 (s, 4H, -NH-ArHOC H_2 -), 4.77 (s, br, 4H,CpH), 4.45 (s, 4H, ArH-OC H_2 -), 4.33 (s, br, 4H, CpH), 4.17 (q, J = 7.1 Hz, 8H, -OC H_2 CH₃), 1.33-1.22 (m, 12H, -OC H_2 CH₃).


ES-TOF mass spectrum: $C_{56}H_{56}N_2O_{14}Fe = 1037.20 ([M+H^+]) m/z$.

Elemental Analysis:

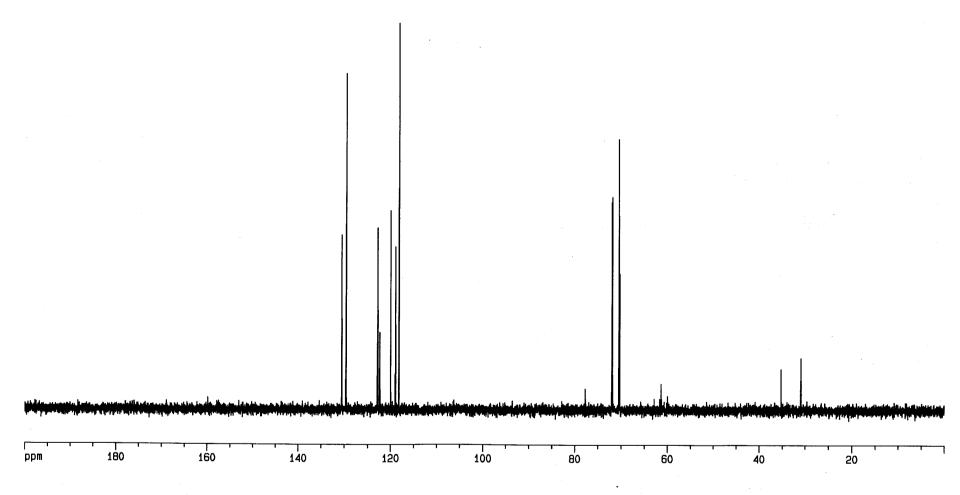
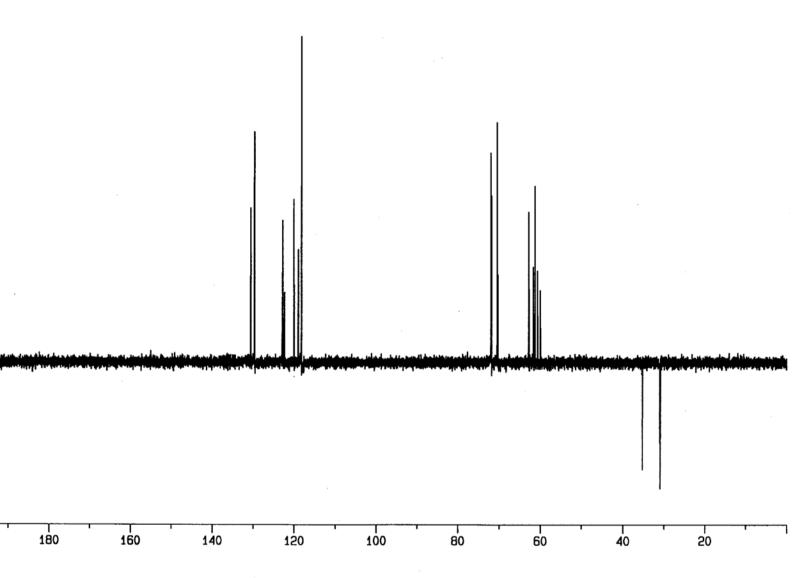
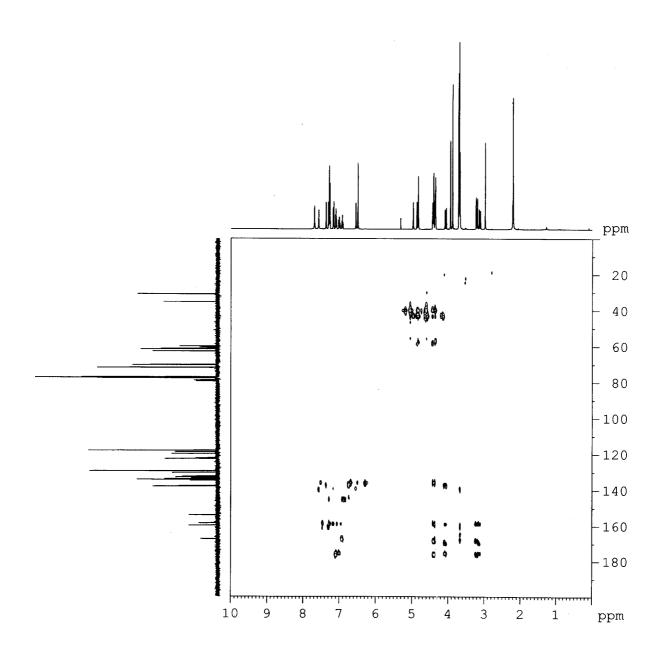

Anal. Calcd. for $C_{56}H_{56}N_2O_{14}Fe$: C, 64.87; H, 5.44; N, 2.70.

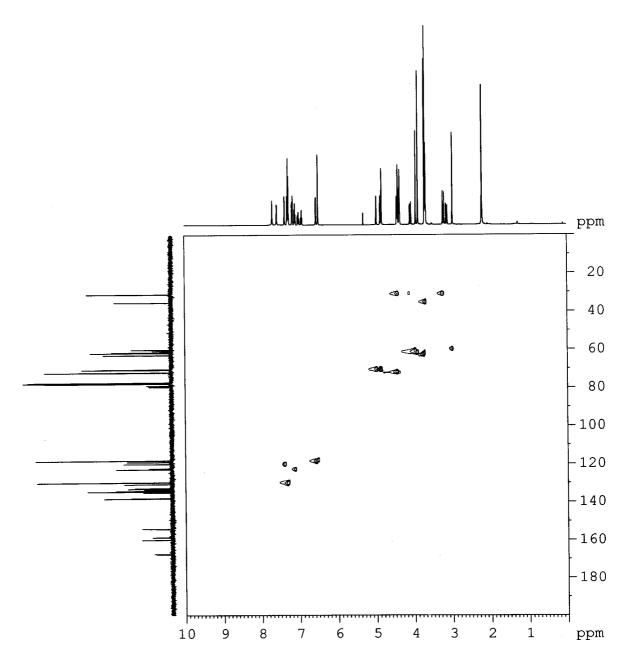
Found: C, 64.84; H, 5.40; N, 2.63.

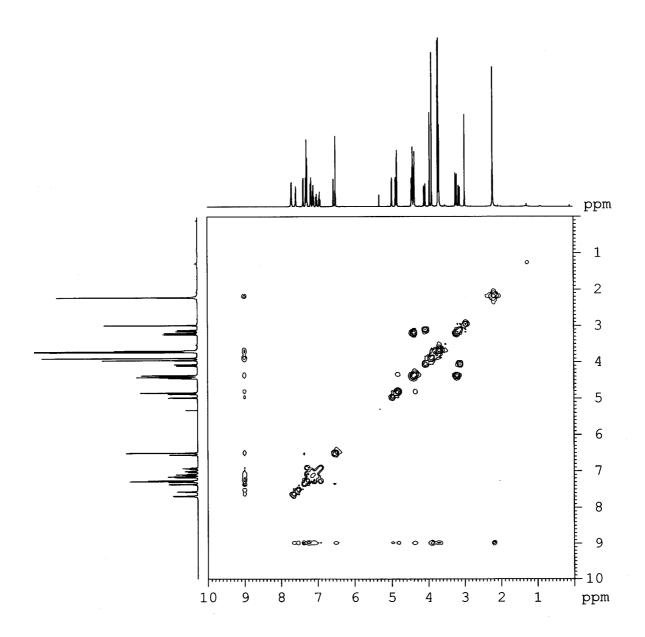
Melting point: 227 °C

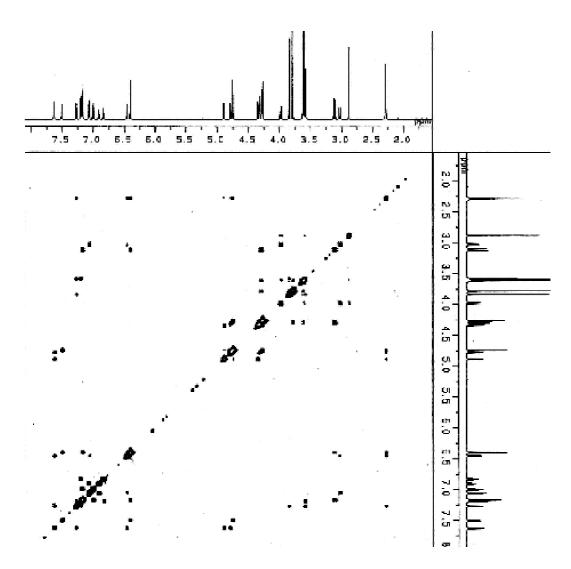
Figure 1 ¹H-NMR of 5,7-diamideferrocenyl-25,26,27,28-tetramethoxycalix[4]arene (**L1**) in CDCl₃ 400 MHz

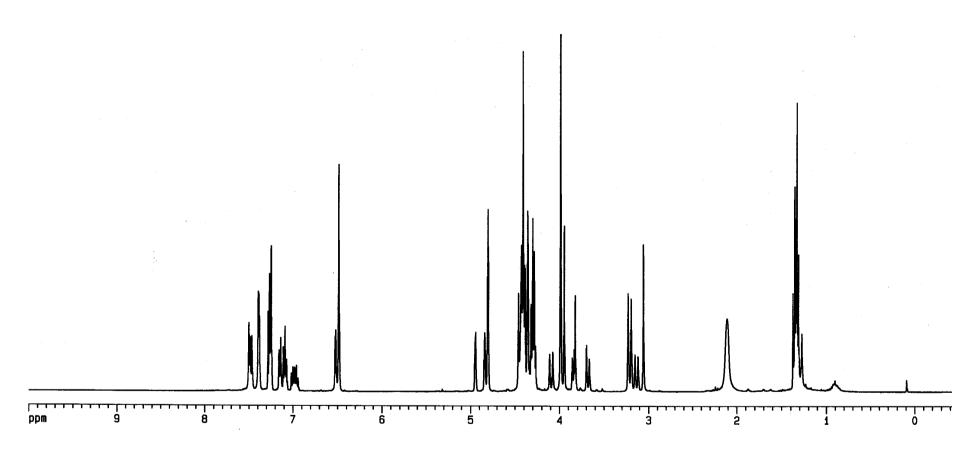
Figure 2 ¹³C-NMR of 5,7-diamideferrocenyl-25,26,27,28-tetramethoxycalix[4]arene (**L1**) in CDCl₃ 400 MHz

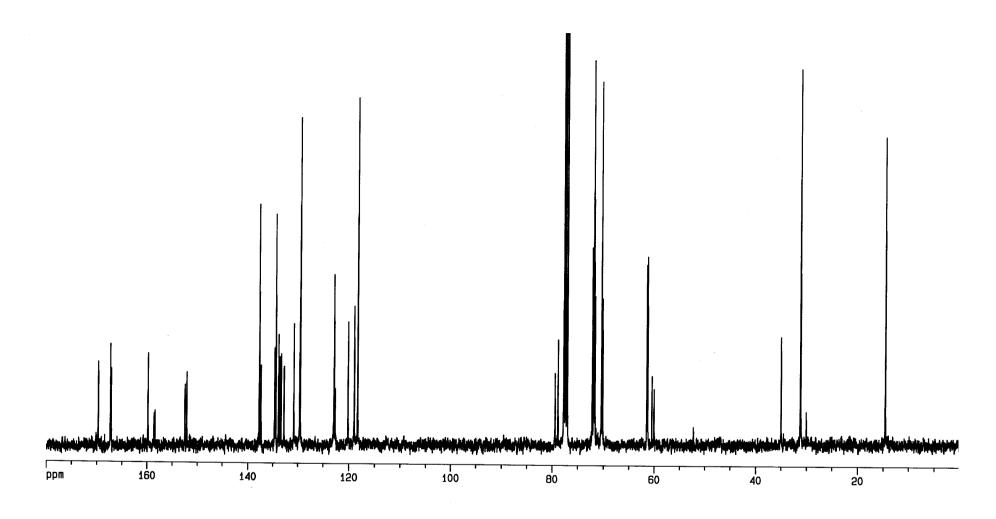




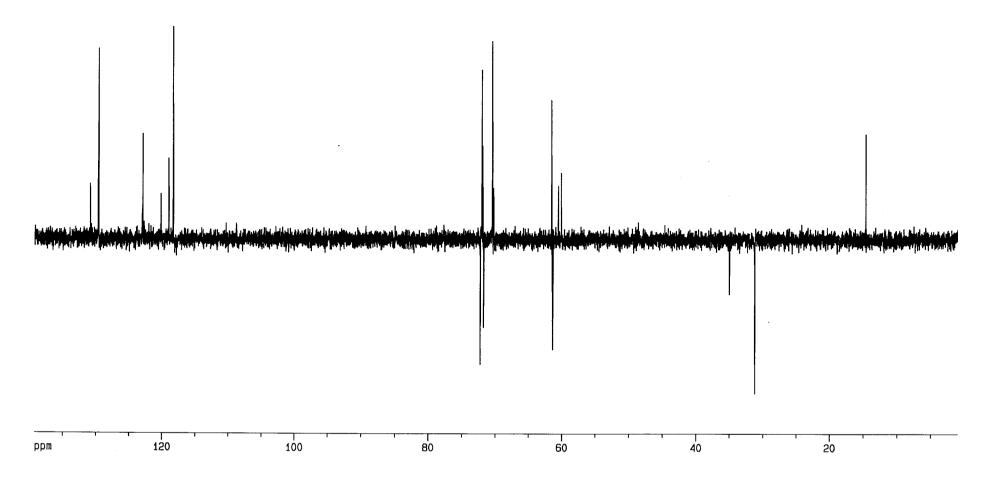

Figure 3 ¹³C-DEPT-90 of 5,7-diamideferrocenyl-25,26,27,28-tetramethoxycalix[4]arene (L1) in CDCl₃ 400 MHz

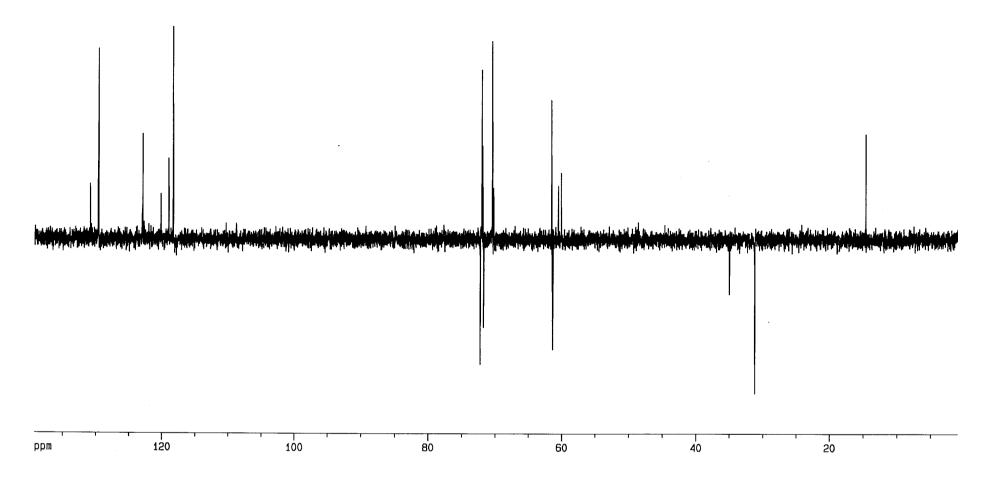

 $\textbf{gure 4}^{13}\text{C-DEPT-135 of 5,7-diamide ferrocenyl-25,26,27,28-tetramethoxycalix} \textbf{[4]} arene \textbf{(L1)} in CDCl_3 400 \text{ MHz}$

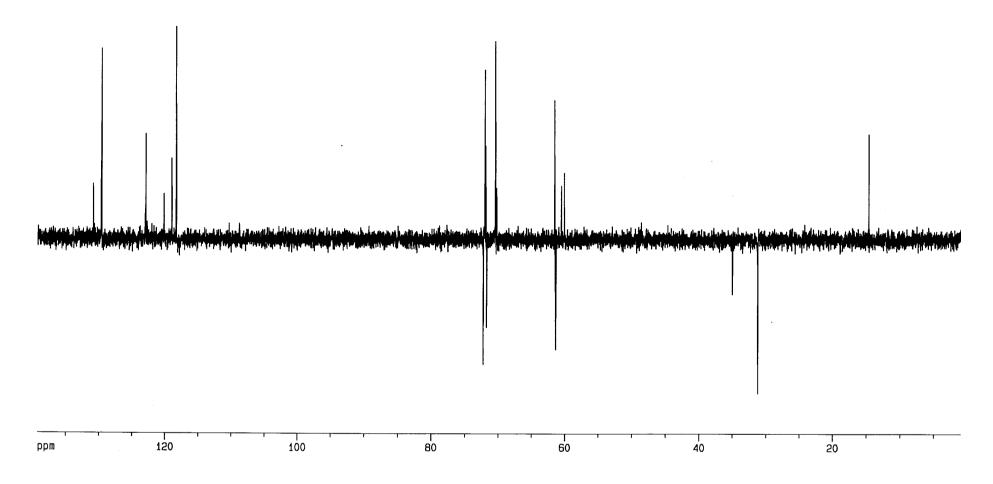

 $\label{eq:Figure 5 HMBC of 5,7-diamide ferrocenyl-25,26,27,28-tetramethoxycalix [4] arene ~\textbf{(L1)} in \\ CDCl_3~400~\text{MHz}$

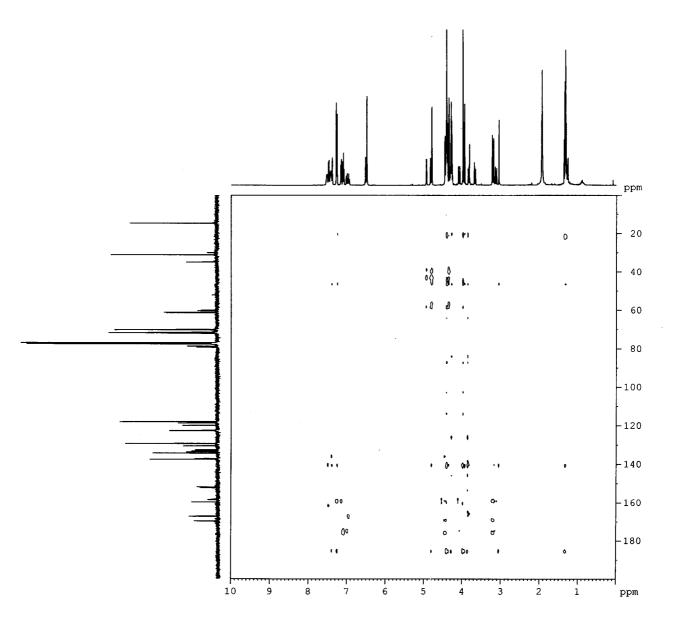

 $\label{eq:Figure 6} \textbf{Figure 6} \ \text{HMQC} \ \text{of 5,7-diamide ferrocenyl-25,26,27,28-tetramethoxycalix[4] arene (\textbf{L1}) \ \text{in CDCl}_3 \ 400 \ \text{MHz}$

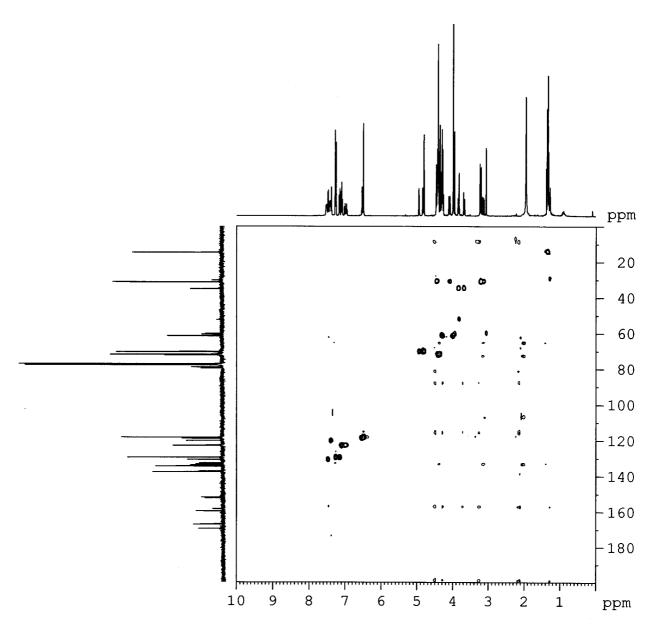

 $\textbf{Figure 7} \ COSY \ of 5,7-diamide ferrocenyl-25,26,27,28-tetramethoxycalix [4] arene \ \textbf{(L1)} \ in \\ CDCl_3 \ 400 \ MHz$

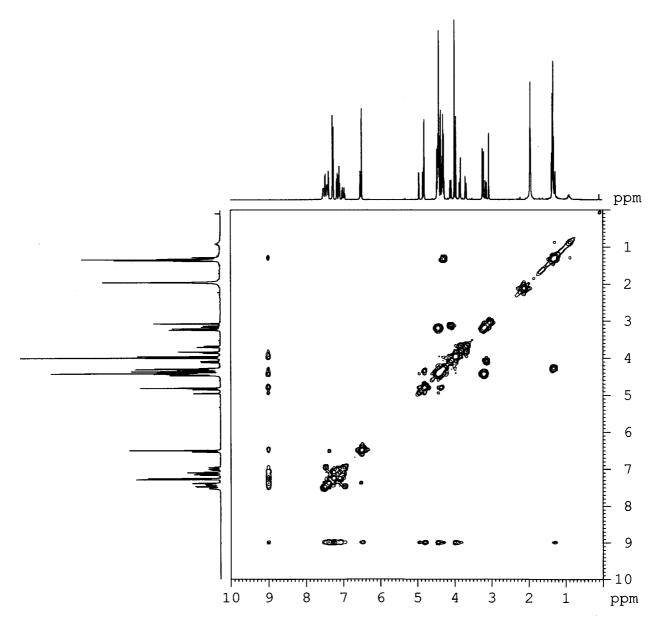

 $\textbf{Figure 8} \ \ NOESY \ of 5,7-diamide ferrocenyl-25,26,27,28-tetramethoxycalix [4] arene \ \textbf{(L1)} \ in \\ CDCl_3 \ 400 \ MHz$

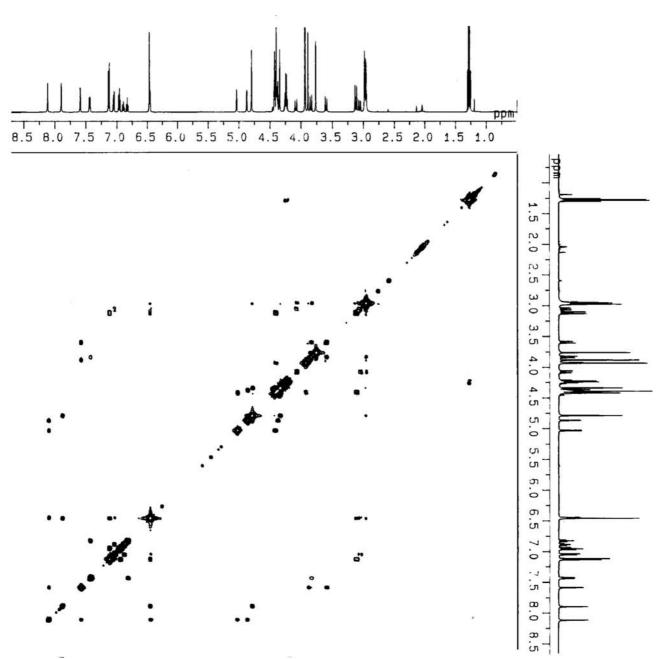

Figure 9. ¹H-NMR of 5,7-diamideferrocenyl-25,26,27,28-tetramethylethylestercalix[4] arene (**L2**) in CDCl₃ 400 MHz.


Figure 10. ¹³C-NMR of 5,7-diamideferrocenyl-25,26,27,28-tetramethylethylestercalix[4]arene (**L2**) in CDCl₃ 400 MHz.


Figure 11. ¹³C-DEPT-135 of 5,7-diamideferrocenyl-25,26,27,28-tetramethylethylestercalix[4]arene (**L2**) in CDCl₃ 400 MHz.


Figure 12. ¹³C-DEPT-135 of 5,7-diamideferrocenyl-25,26,27,28-tetramethylethylestercalix[4]arene (**L2**) in CDCl₃ 400 MHz.


Figure 13. ¹³C-DEPT-135 of 5,7-diamideferrocenyl-25,26,27,28-tetramethylethylestercalix[4]arene (**L2**) in CDCl₃ 400 MHz.


Figure 14. HMBC of 5,7-diamideferrocenyl-25,26,27,28-tetramethylethylestercalix[4] arene ($\mathbf{L2}$) in CDCl₃ 400 MHz

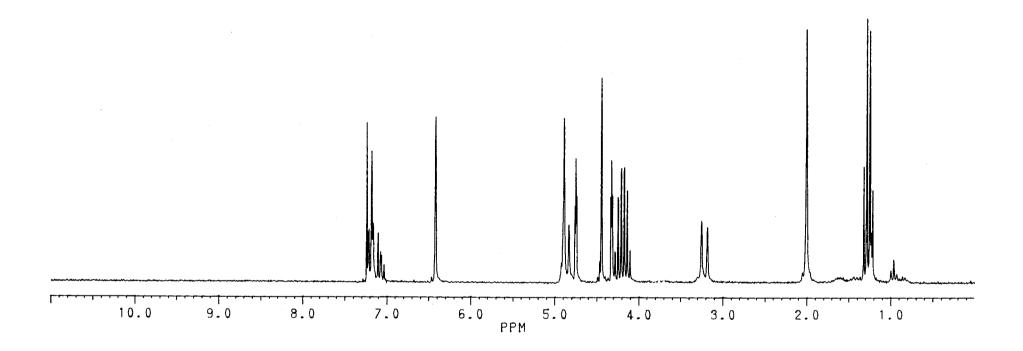

Figure 15. HMQC of 5,7-diamideferrocenyl-25,26,27,28-tetramethylethylestercalix[4] arene (**L2**) in CDCl $_3$ 400 MHz

Figure 16. COSY of 5,7-diamideferrocenyl-25,26,27,28-tetramethylethylestercalix[4]arene (**L2**) in CDCl₃ 400 MHz

Figure 17 NOESY of 5,7-diamideferrocenyl-25,26,27,28-tetramethylethylestercalix[4]arene (**L2**) in CDCl₃ 400 MHz

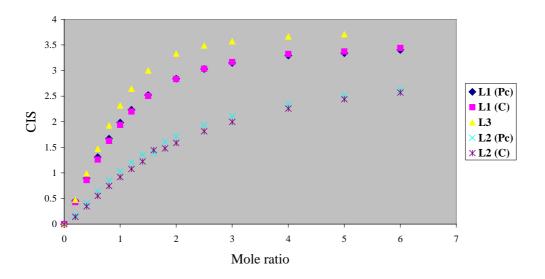
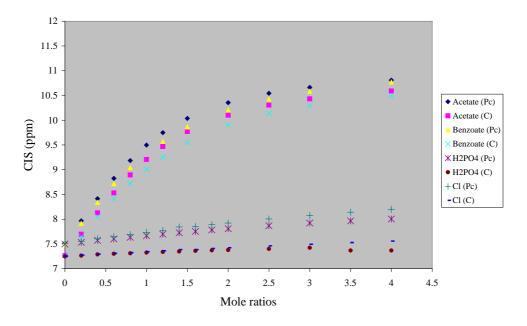
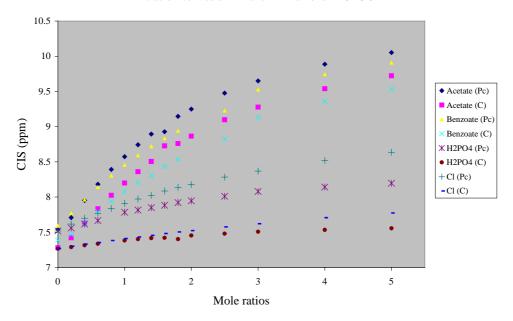
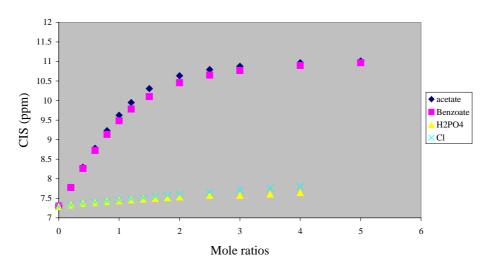


Figure 18 ¹H-NMR of 5,7-diamideferrocenyl-25,26,27,28-dimethoxydimethylethylestercalix[4] arene (**L3**) in CDCl₃ 200 MHz

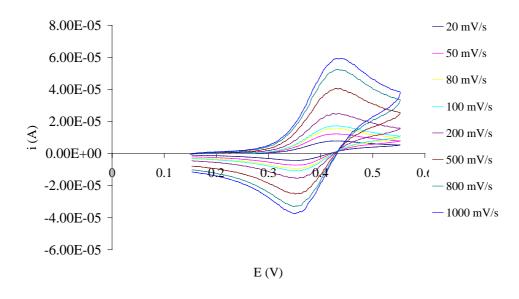

Supporting Informations

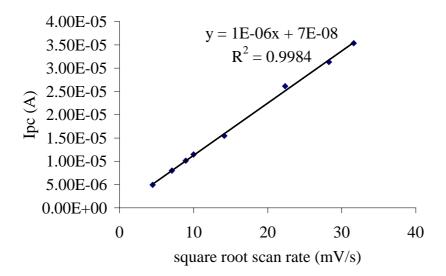
 $^{1}\text{H-NMR}$ titration techniques of **L1**, **L2** and **L3** with anions in CD $_{3}$ CN:


Titration curve of L1, L2 and L3 with acetate in AN-d6

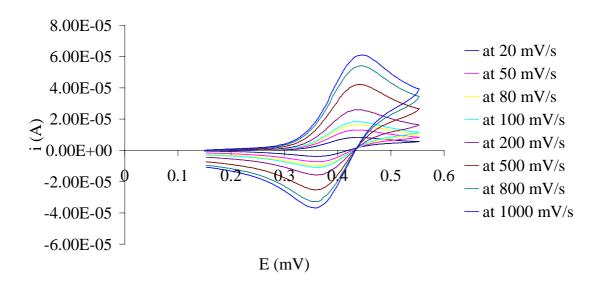

Titration curves of L1 and TBAanions in CD3CN

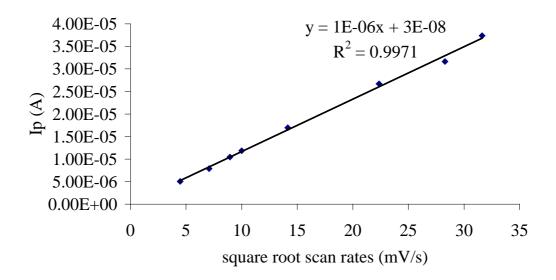
Titration curves of L2 and TBAanions in CD3CN

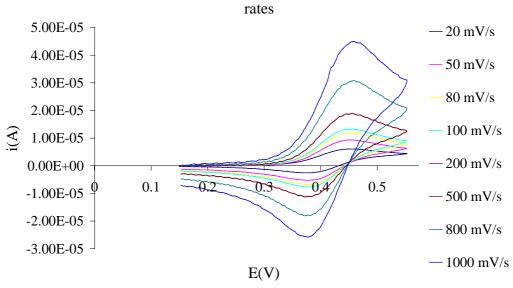

Titration curves of ${\bf L3}$ and TBAanions in CD3CN

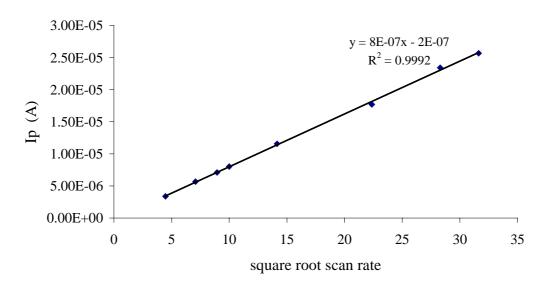

Cyclic Voltammetry Results:

1 Ligands at various scan rates

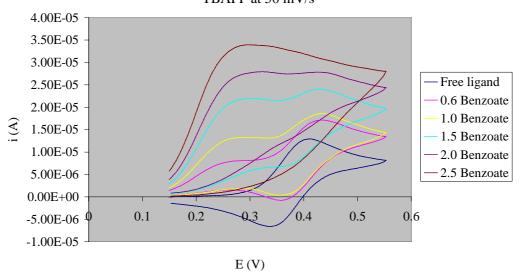

CVs of L1 in acetonitrile with 0.1 m. TBAPF at different scan rates


Correlation of L1 with various scan rates

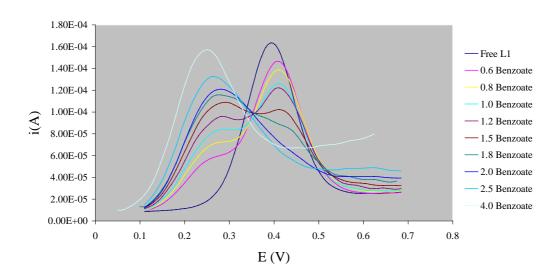

CVs of **L2** in acetonitrile with 0.1 M. TBAPF at different scan rates


Correlation of L2 at various scan rate

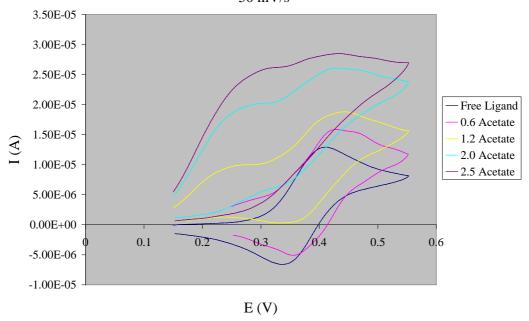
CVs of ${\bf L3}$ in acetonitrile with 0.1 M TABPF at different scan

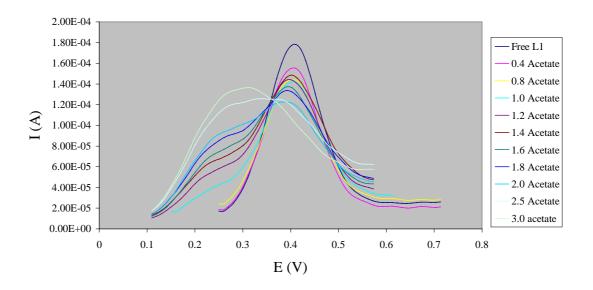


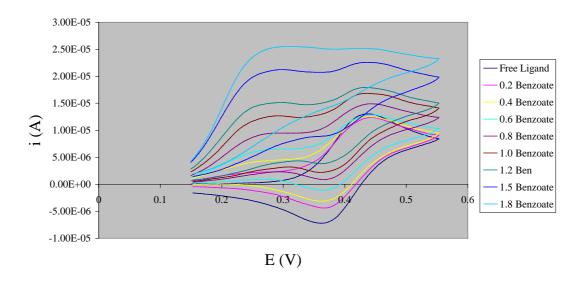
Correlation of L3 at various scan rates

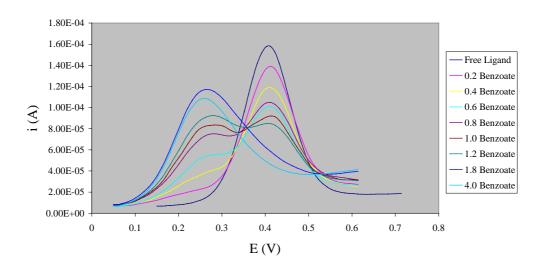


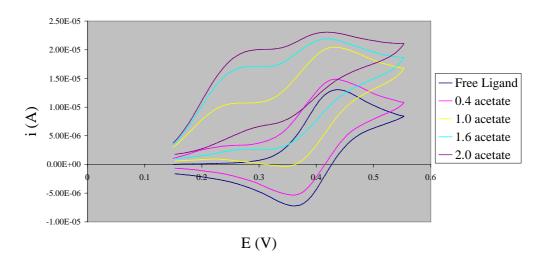
1. Cyclic Voltammetry titrations with anions.

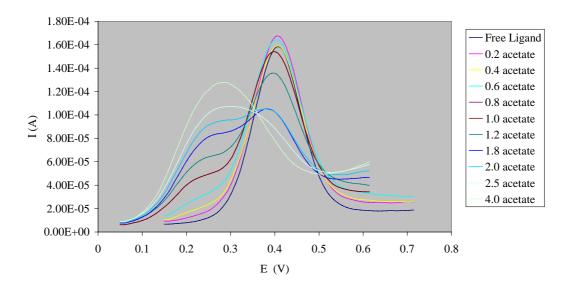

CV titrations between $\bf L1$ and Benzoate in acetonitrile with 0.1 M. TBAPF at 50 mV/s

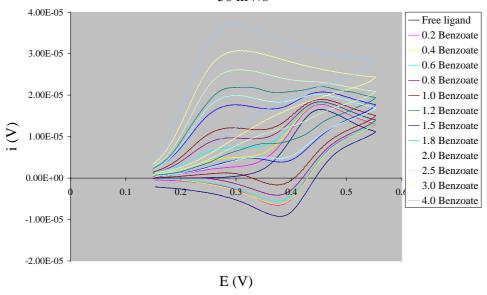

SW titration of L1and Aenzoate in AN with 0.1 M. TBAPF at 50 mV/s

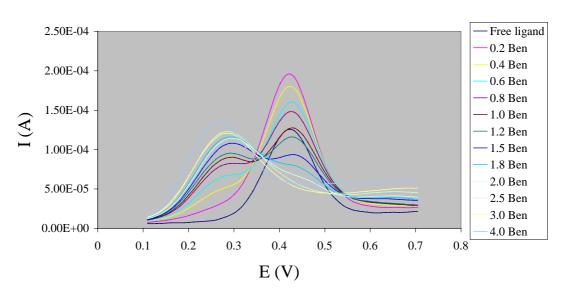

CV Titrations of L1 and Acetate in acetonitrile with 0.1 m. TBAPF at $50\ mV/s$

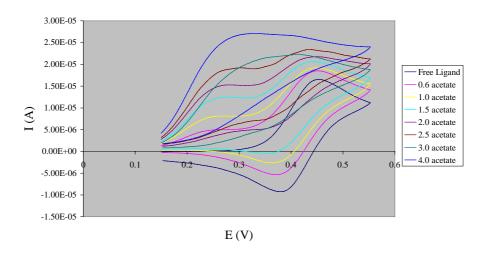

SW titration of L1 and Acetate in AN with TBAPF at 50 mV/s

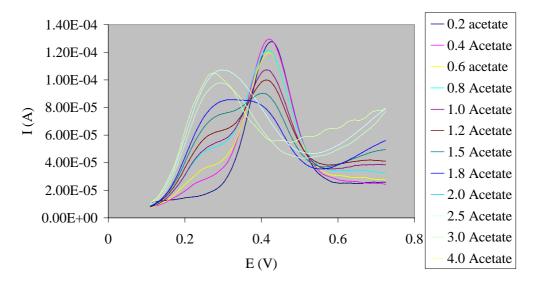

CV titration of ${\bf L2}$ and Benzoate in AN with 0.1 M. TBAPF at 50~mV/s

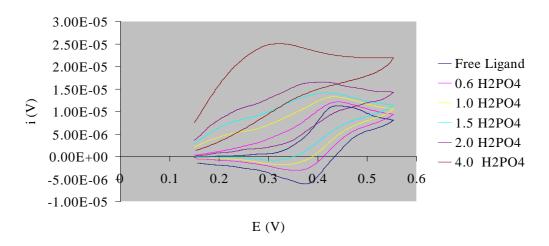

SW titration of L2 and Benzoate in AN with 0.1 M. TBAPF at 50 mV/s

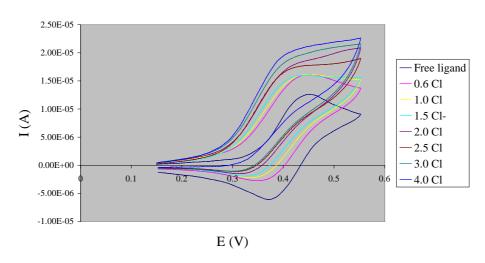

CV titrations of ${\bf L2}$ and Acetate in AN with 0.1 M. TBAPF6 at 50~mV/s

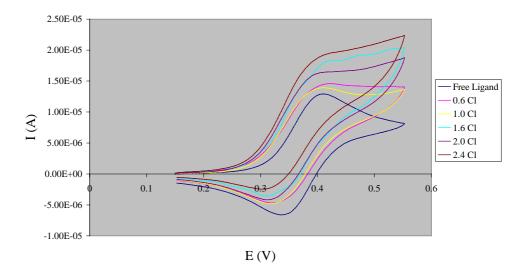

SW of L2 and Acetate in 0.1 M. TBAPF in AN at 50 mV/s


CV Titrations of ${\bf L3}$ and Benzoate in AN with 0.1 M. TBAPF at 50~mV/s


SW titration of ${\bf L3}$ and Benzoate in AN with 0.1 M. TBAPF at 50 mV/s


CV titrations of L3 and acetate in AN with TBAPF at 50 mV/s


SW titration of L3 and Acetate in AN with TBAPF at 50 mV/s


CV titration of L2 and H2PO4- in AN with 0.1 M.TBAPF at 50 mV/s

CV titrations of L2 and Cl- in AN with TBAPF at 50 mV/s

CV titrations of L1 and Cl in AN with TBAPF at 50 mV/s

